Journal of Organometallic Chemistry, 108 (1976) 35-46 © Elsevier Sequoia S.A., Lausanne -- Printed in The Netherlands

DERIVATIVES OF BIVALENT GERMANIUM, TIN AND LEAD

XIV*. THE REACTIONS OF CYCLOPENTADIENYLTIN(II) COMPOUNDS WITH SOME MAIN GROUP LEWIS ACIDS

35

PHILIP G. HARRISON** and JOHN A. RICHARDS

Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (Great Britain)

(Received September 22nd, 1975)

Summary

The reactions of dicyclopentadienyltin and bis(methylcyclopentadienyl)tin with some boron and aluminium trihalides give complexes of composition $R_2Sn:MX_3$ ($R = C_5H_5$, $MX_3 = BF_3$, BBr_3 , $AlCl_3$, $AlBr_3$; $R = MeC_5H_4$, $MX_3 =$ $AlCl_3$). With BCl_3 , $SnBr_4$, and $FeCl_3$, exchange of cyclopentadienyl groups for halogen takes place. Cyclopentadienyltin chloride and $AlCl_3$ yield the complex $C_5H_5SnAlCl_4$. Redistribution of organic groups occurs between cyclohexylmagnesium bromide and dicyclopentadienyltin producing cyclopentadienylmagnesium bromide etherate. Reaction of allyl or trimethylsilyl halides with $(C_5H_5)_2Sn:AlX_3$ yields $C_5H_5SnAlX_4$ complexes. The structures of the complexes have been investigated by infrared and tin-119m Mössbauer spectroscopy.

Introduction

The angular sandwich structure of dicyclopentadienyltin [2] suggests that the lone pair resides in a sp^2 hybrid orbital, and therefore should be available for complex formation with Lewis acids. The recently communicated crystal structure of cyclopentadienyltin chloride shows that this compound too has a bent structure, again suggesting a stereochemically-active lone pair [3]. We have previously reported briefly the formation of the complexes $(C_5 H_5)_2 \operatorname{Sn:BF_3}[4]$, $(\operatorname{MeC_5H_4})_2 \operatorname{Sn:AlCl_3}[5]$, and $(C_5 H_5)_2 \operatorname{Sn:M(CO)_5}(M = \operatorname{Cr}, \operatorname{Mo}, W)$ [6], in this paper we give a more detailed account of the reactions of cyclopentadienyltin(II) compounds with Main Group Lewis acids.

* For part XIII see ref. 1.

** To whom correspondence should be addressed.

Results and discussion

Similar to the reaction of aluminium trichloride dimer with $(MeC_5H_4)_2$ Sn the addition of a benzene solution of $(C_5H_5)_2$ Sn to either Al₂Cl₆ or Al₂Br₆ in benzene yields the 1/1 complexes as white air-sensitive solids (eq. 1). Reaction with Al₂Cl₆ is heterogeneous and slower than the immediate reaction observed with Al₂Br₆. The similar reactions of $(C_5H_5)_2$ Sn and $(MeC_5H_4)_2$ Sn with BCl₃

$$2(C_5H_5)_2Sn + Al_2X_6 \xrightarrow{C_6H_6} 2(C_5H_5)_2Sn:AlX_3$$
(1)
X = Cl, Br

$$R_2 Sn + BX_3 \rightarrow SnX_2 + (R_2 BX)$$

$$R = C_5 H_5, MeC_5 H_4; X = Cl, Br$$
(2)

or BBr₃ in benzene, despite stringent purification of the boron trihalides, gave the corresponding tin(II) halide as the only isolated product, presumably as a result of facile ligand exchange (eq. 2). Reaction of freshly prepared and recrystallised BI₃ with $(C_5H_5)_2$ Sn in benzene gave the immediate formation of an amorphous yellow solid, which analysed as the complex $(C_5H_5)_2$ Sn:BI₃. However the tin-119*m* Mössbauer spectrum of the solid showed a single line with a higher isomer shift than the other complexes, and the infrared spectrum was not comparable with those of the other Group III complexes. It would appear therefore that in this case both exchange and complexation occur giving the complex I_2 Sn:B(C_5H_5)₂I. The BBr₃ complex of $(C_5H_5)_2$ Sn could be obtained via the boron tribromide etherate formed in situ prior to the addition of the stannocene (eq. 3). The attempted preparation of the BCl₃ complex by the same route

$$(C_{5}H_{5})_{2}Sn + BBr_{3} \cdot O(C_{2}H_{5})_{2} \rightarrow (C_{5}H_{5})_{2}Sn:BBr_{3} + (C_{2}H_{5})_{2}O$$
(3)

again resulted in ligand exchange and the formation of tin(II) chloride, although we have previously obtained $(C_5H_5)_2 Sn:BF_3$ from $BF_3 \cdot O(C_2H_5)_2$ [4].

The tin-119*m* Mössbauer spectra of the Group III metal trihalide complexes all consist of broad single resonances in the range $3.71-3.83 \text{ mm s}^{-1}$ (Table 1), with the exception of the product from the BI₃ reaction. These values are very similar to the isomer shift values of the free stannocenes, $(C_5 H_5)_2 \text{Sn}$ (3.74 mm s^{-1}) [7] and $(\text{MeC}_5 H_4)_2 \text{Sn} (3.83 \text{ mm s}^{-1})$ [8], confirming the divalent nature of the tin in these complexes, and excluding the possibility of insertion of the stannylene into the Group III metal—halogen bond to form a tetravalent tin derivative. The rather large line-widths ($\Gamma = 1.24-2.08 \text{ mm s}^{-1}$) suggest the presence of unresolved quadrupole splittings (cf. the resolved splitting of 0.90 mm s⁻¹ observed for $(C_5 H_5)_2 \text{Sn}:\text{BF}_3$ [4]) and the similarities of the spectra with those of the parent stannocenes indicates negligible change in the electronic environment of the tin and suggesting the retention of the hybridisation state at the tin on complexation.

The infrared spectra of the complexes $(C_5H_5)_2$ Sn:AlX₃ (X = Cl, Br) and $(C_5H_5)_2$ Sn:BBr₃ are given in Table 2, and as can be seen from these have many similarities with the spectrum of $(C_5H_5)_2$ Sn itself in the range 3500–700 cm⁻¹ [8]. The ring modes of the complexes are in the majority of cases very similar

TABLE 1

Compound	I.S.	Q.S.	Γ1	Γ2	
$(MeC_5H_4)_2 Sn^{a}$	3.83	0.78			
(MeC ₅ H ₄) ₂ Sn:AlCl ₃ ^b	3.71		1.50	_	
(C5H5)2Sn c	3.74	0.86			
$(C_5H_5)_2$ Sn:AlCl ₃ b	3.71		1.46		
$(C_5H_5)_2$ Sn: AlBr ₃ ^b	3.83		1.24	_	
(C ₅ H ₅) ₂ Sn:BBr ₃ ^b	3.77		2.08		
$(C_5H_5)_2$ Sn:BF ₃ ^c	3.79	0.90	—		
I_2 Sn:B(C ₅ H ₅) ₂ I ^b	4.03		0.85	—	
C ₅ H ₅ SnCl ^b	3.71	1.04	0.99	0.76	
C ₅ H ₅ SnAlCl ₄ ^b	3.73		1.19	-	
$C_5H_5SnAlBr_4 \cdot \frac{1}{2}C_6H_6 b$	3.75	-	0.91		
SnCl ₂ d	4.07		_	_	
SnBr ₂ ^d	3.93	-			
SnI ₂ d	3.85	_	-	_	
$(C_6H_6)Sn(AlCl_4)_2 \cdot C_6H_6^{e}$	3.42				

THE MÖSSBAUER PARAMETERS FOR THE GROUP III TRIHALIDE COMPLEXES OF $(C_5H_5)_2Sn$ AND (MeC_5H_4)_2Sn AND RELATED COMPOUNDS (mm s^-1)

^a Ref. 8. ^b This work. ^c Ref. 4. ^d Ref. 21. ^e Ref. 14.

indicating "local" $C_{5\nu}$ symmetry for the cyclopentadienyl rings, however the two C-H deformation modes v_2 and v_7 are raised in energy by 20-30 cm⁻¹ on complexation. On the basis of $C_{3\nu}$ "local" symmetry, two Al-X stretching $(A_1 + E)$ and two XAIX deformation $(A_1 + E)$ modes are expected for a pyramidal AlX₃ residue from group-theoretical predictions. In the complex $(C_5H_5)_2$ Sn:AlCl₃, the two Al–Cl stretching modes are found at 485 (E) and 428 (A_1) cm⁻¹, and the two ClAlCl deformation modes at 294 (A_1) and 274 (E) cm^{-1} , although the latter absorption may correspond to the antisymmetric tin-ring stretch which is found at 240 cm⁻¹ in $(C_5 H_5)_2$ Sn and 237 cm⁻¹ in $(MeC_5H_4)_2$ Sn [8]. These vibrations are similar to those found in the complexes Me₃N:AlCl₃ [9], ν (Al-Cl)(E) 545, ν (Al-Cl)(A₁) 416 and δ (Al-Cl)(A₁) 313 cm^{-1} , and $(MeC_5H_4)_2Sn:AlCl_3$ [5], $\nu(Al-Cl)(E)$ 493, $\nu(Al-Cl)(A_1)$ 442 and $\delta(Al-Cl)(A_1)$ 327 cm⁻¹. The Al-Br stretching frequencies for the complex $(C_5 H_5)_2$ Sn:AlBr₃ are assigned to bands at 391 (E) and 331 (A₁) cm⁻¹ in comparison to the Me₃N:AlBr₃ [9], ν (Al-Br)(E) 450, ν (Al-Br)(A₁) 375 and $\delta(Al-Br)(A_1)$ 227 cm⁻¹. The spectra of both aluminium trihalide complexes exhibit additional bands in the region $600-700 \text{ cm}^{-1}$, which cannot be assigned as either ring or skeletal fundamentals although similar bands were observed in the spectrum of $(MeC_5H_4)_2Sn:AlCl_3$ which were attributed to interactions between the C-H(out-of-plane) bending motions of the ring and the AlCl₃ residue [5]. Assignments of the amine adducts of boron tribromide [10] place the stretching modes for the pyramidal BBr₃ unit within the ranges $\delta(B-Br)(A_1)$ 275-267 cm⁻¹ and $\nu(B-Br)(E)$ 709-674 cm⁻¹ with the two deformation modes occurring below the limits of the present study. Thus, in the spectrum of $(C_5H_5)_2$ Sn:BBr₃, the $\delta(B-Br)(A_1)$ mode is assigned to the band at 289 cm⁻¹ whilst the (E) stretching mode probably coincides with the out-of-plane bending vibration v_2 at 763 cm⁻¹.

Both the Mössbauer and infrared data for the Group III trihalide complexes

are consistent with the formation of a Lewis base—Lewis acid complex with a structure retaining the geometry of the $(C_5H_5)_2$ Sn residue whilst forming a σ donor tin—metal bond(I).

(I)

On mixing THF solutions of $(C_5 H_5)_2$ Sn and SnCl₂, rapid and facile ligand exchange takes place yielding cyclopentadienyltin chloride in high yield as a creamy white crystalline solid [11]. The infrared spectrum of the solid in the range 3500–250 cm⁻¹ is listed in Table 3. Again the spectrum can be assigned in terms of "local" C_{5v} geometry for the cyclopentadienyl ring. Neither of the two expected C–H stretching modes could be observed. The bands observed at 282 and 269 cm⁻¹ are assigned as the Sn–Cl stretching and antisymmetric metal–ring stretching vibrations, respectively, although some degree of mixing of these modes is to be expected. The crystal structure of $C_5 H_5$ SnCl, however, shows that, although the cyclopentadienyl ring is planar and regular, it is tilted with respect to the tin such that two carbon atoms are closer to the tin than the others [3]. It would appear, therefore, that the infrared spectra are rather insensitive to the exact orientation of the rings with respect to the metal (cf. the spectral changes between η^5 and η^1 cyclopentadienylmetal complexes [12]).

Cyclopentadienyltin chloride also forms a 1 : 1 complex with aluminium chloride, for which several structures are possible. The compound, which is a white crystalline air-sensitive solid, may have a similar structure to those proposed for the similar $(C_5H_5)_2$ Sn derivatives, i.e. with a dative the aluminium σ -bond (IV). Alternatively, structures involving AlCl₄ units either as discrete ionic species (V) or covalently bonded to the tin by a chlorine bridge (VI) may occur.

(立)

(立)

TABLE 2

THE INFRARED SPECTRA OF THE GROUP III TRIHALIDE COMPLEXES OF $(C_5H_5)_2$ Sn in the SOLID STATE ^a

(C ₅ H ₅) ₂ Sn ^b	(C5H5)2- SnAlCl3	(C ₅ H ₅) ₂ - SnAlBr ₃	(C5H5)2- SnBBr3	Assignment ^c
3105 vvw	3103 vw	3112 w		v_1 (C-H) stretch (A ₁)
3080 vvw	3051 vw	3060 vw		ν_5, ν_9 (C-H) stretches (E ₁ , E ₂)
2260 vvw	2264 vvw	-		Combin. band $(v_4 + v_6)$
1745 vvw				
1640 vw	1632 vw	1619 vw	1641 vvw	Combin. band $(v_{14} + v_3)$
	1478 w		1548 vvw	ν_{12} (C-C) stretch (E ₂)?
1429 m	1423 mw	1424 ms	1427 s	$\nu_8(CC)$ stretch (E ₁)
1382 vw		1404 mw		
1369 vw	vw 1367 w 1369 vw (sh)			
	1262 vvw	1265 vvw		ν4(C—H) bend i.p. (A2)
1170 vvw	1170 vvw	1169 vvw		$v_{10}(C-H)$ bend i.p. (E ₂)
	1151 vvw	1156 vvw	1157 vvw	
1116 mw	1110 m	1111 m	1112 s	ν_3 Ring breathing (A ₁)
1064 vw	1060 vw	1072 w	1065 w	v_{11} (C-H) bend o.p. (E ₂)
	1035 vw	1060 vw		
1005 s	1006 m	1004 ms	1002 vs	$\nu_6(C-H)$ bend i.p. (E ₁)
		978 m		
	962 vvw	960 vvw		
	916 vw	916 vvw		
93 vvw	892 mw	896 vw (sh)	892 vw (sh)	ν_{13} (CC) bend i.p. (E ₂)
		891 w	872	
838 vw		838 ms (sh)		
790 vvs	809 ms	813 vvs	801 vvs	ν_7 (C-H) bend o.p. (E ₁)
757 vvs (br)	783 ms	782 vvs	763 vvs	ν_2 (C-H) bend o.p. (A ₁)
		753 m (sh)		
		737 w (sh)		
	722 w (br)	723 w (sh)		۱.
	674 mw	674 mw		
664 vw	663 mw	663 ms		Combin. band $(v_8 - v_2)$
		654 ms		
	564 w	400		$v_{14}(C-C)$ bend ?
		489 w	487 VW	
	485 s (br)			ν (Al-Ci) stretch (E)
	428 m (sh)			$\nu(AI-CI)$ stretch (A_1)
		430 ms (sh)		
		415 s (sh)		
		391 vvs		V(AI-Br) stretch (E)
	349 VVW	0.00		
	004	333 m		$\nu(AI - BI)$ stretch (A1)
	294 vs (sh)		000	U(AI-01) detorm. (A2)
	074 ()		289 vs	$\nu(B-Br)$ stretch (A1)
940 e	214 W (DE)			Acumm metal-sing stratch
24U S				Asymma. metal-ring stretch

^a Spectra recorded as nujol and halocarbon mulls, and listed as cm⁻¹. ^b Data quoted in Ref. 8. ^c Ring modes labelled in terms of 14 fundamental vibrations predicted by group theory for \hat{C}_{5v} "local" symmetry for a more detailed treatise, see Ref. 8.

The solid-state infrared spectrum (Table 3) of the adduct exhibits bands similar to the cyclopentadienyl ring modes of C_5H_5SnCl and $(C_5H_5)_2Sn$, and is therefore consistent with the retention of a *pentahapto*- C_5 ring on complexation; however the two out-of-plane C—H deformation modes (ν_7 and ν_2) are increased in energy significantly from C_5H_5SnCl . Unlike the aluminium trihalide TABLE 3

THE INFRARED SPECTRA OF CYCLOPENTADIENYLTIN(II) CHLORIDE AND ITS ALUMINIUM TRICHLORIDE COMPLEX IN THE SOLID STATE a

(C ₅ H ₅)SnCl	(C ₅ H ₅)SnClAlCl ₃	Assignment	
	3108 m	v_1 (C—H) stretch (A ₁)	
1783 vvw (br)	1809 yvw (br)		1
1752 vvw (br)	1724 vvw (br)		
1664 vvw (br)			
1633 vvw (br)	1630 vw (sh)		
1544 yyw (br)	1512 vw (sh)	$v_{12}(C-C)$ stretch (E_2) ?	
	1494 mw		
1437 vvw (sh)			· · ·
1428 mw	1427 s	$\nu_{8}(C-C)$ stretch (E ₁)	
1424 w	1422 ms (sh)		
1364 yw (br)			
	1308 vvw (br)		
1259 vvw	1272 vw	$\nu_A(C-H)$ bend i.p. (A_2)	
1169 vvw (br)	1172 yvw (br)	$\nu_{i0}(C-H)$ bend i.p. (E_2)	
1151 vvw (br)	1151 yyw (br)		
1113 ms	1113 s	ν_3 Ring breathing (A ₁)	
1106 w (sh)	1107 vw (sh)	y y	
1067 w		ν_{11} (C-H) bend o.p. (E ₂)	
	1034 yyw (sh)		
1003 vs	1010 s	$\nu_{\epsilon}(C-H)$ bend i.p. (E_1)	
962 vw (sh)		g(c	
938 vvw			
915 vvw	922 vvw (br)		
891 vw		$\nu_{13}(C - C)$ bend i.p. (E ₇)	
861 vw (sh)		15(
791 vvw	828 vvs (sh)	ν_7 (C-H) bend o.p. (E ₁)	
760 vvs	819 vvs	ν_2 (C-H) bend o.p. (A ₁)	
	723 w		
	700 ms		
	696 ms		
	692 ms		
	678		
663 w		Combin, band (va-va)	
578 vw	572 yw		
537 vw (br)		$V_{1A}(C-C)$ bend?	
	496 vvs	$\nu(Al-Cl)$ stretch (E)	
414 www	10000		
	391 yyw (br)		
	350 yay (br)		
	902 mg	$\delta(A = C)$ deform $(A = \pm F)$	
282 mw (sh)	233 IIIS 287 ms (sh)	Metal-chlorine stretch	
260 m	201 ms (an) 955	Acumm motal_ming stateb	
203 m	200 W	Asymm, metal-ring stretch	

^a Spectra recorded as nujol and halocarbon mulls, and listed in cm^{-1} .

complexes of the stannocenes which exhibit two Al—X stretching modes, $C_{\rm s}H_{\rm s}{\rm SnCl} \cdot {\rm AlCl}_{3}$ exhibits a single band at 496 cm⁻¹ in the Al—Cl stretching region and additional bands at ca. 290 cm⁻¹. The single Al—Cl stretching frequency is compatible with the existence of tetrahedral AlCl₄ moieties, which generally give rise to a single stretching frequency at ca. 495 cm⁻¹ [13]. A solid state structure involving isolated $[(C_{5}H_{5})Sn]^{+}$ cations such as in structure V is unlikely since the electron density at the tin would be expected to be very high giving a correspondingly very high Mössbauer isomer shift. However, the isomer shift value of the complex (3.75 mm s^{-1}) is similar to that of C_5H_5 SnCl (3.71 mm s^{-1}) . The structure VI involving a tin—chlorine—aluminium bridge does however fit the available data, although it is possible that the AlCl₄ units bridge adjacent tin atoms as they do in the arene complexes (C_6H_6) Sn(AlCl₄)₂ $\cdot C_6H_6$ [14] and [ArSnCl(AlCl₄)]₂ (Ar = C_6H_6 , MeC₆H₄Me-p) [15].

On reaction of anhydrous tin(IV) bromide and $(MeC_5H_4)_2Sn$ in a 1 : 1 molar ratio in benzene, tin(II) bromide and a waxy solid of composition SnBr₄ · $2(MeC_5H_4)_2Sn$ were obtained. The Mössbauer spectrum of the latter solid consisted of three resonances, a singlet at 4.00 mm s⁻¹, and a doublet in the tetravalent tin region with isomer shift 1.51 mm s⁻¹ and quadrupole splitting 1.82 mm s⁻¹, the two signals being in an approximately 1 : 1 ratio. The high value of the tin(II) resonance serves to exclude a stannocene complex, and the material appears to be a mixture of tin(II) bromide (*I.S.* 3.93 mm s⁻¹) and $(MeC_5H_4)_2$ -SnBr₂ (cf. $(C_5H_5)_2SnCl_2$: *I.S.* 1.51, *Q.S.* 1.83 mm s⁻¹) [16], resulting from ligand exchange.

The addition of an ether solution of anhydrous iron(III) chloride to a similar solution of dicyclopentadienyltin in the molar ratio 1 : 3 leads to a rapid ligand exchange and redox to yield three products, ferrocene, tin(II) chloride and dicyclopentadienyltin(IV) dichloride (eq. 4). The two tin products coprecipitate as a creamy white powder, which exhibits a Mössbauer spectrum com-

$$Fe_2Cl_6 + 3(C_5H_5)_2Sn \to 2SnCl_2 + (C_5H_5)_2SnCl_2 + 2(C_5H_5)_2Fe$$
(4)

patible with a mixture of products, with a tin(II) singlet (I.S. 3.97 mm s⁻¹) and a tin(IV) doublet (approximate parameters: I.S. 1.6, Q.S. 2.0 mm s⁻¹). Reaction of Fe₂Cl₆ and (C₅H₅)₂Sn in a 1:2 molar ratio in ether leads to the formation of a grey powder, which has a tin-119m Mössbauer spectrum similar to that of the white solid obtained above; however it also contains iron (iron-57 Mössbauer). Ferrocene is again a product of the reaction. Repetition of the reaction in THF gave on concentration a white crystalline solid which exhibited both an iron and tin Mössbauer resonances, although when removed from solution the solid rapidly powdered and became a grey colour. No identification was therefore possible.

We reported previously that both $(C_5H_5)_2$ Sn and $(MeC_5H_4)_2$ Sn take part in a pseudo-carbenoid insertion into the magnesium—carbon bond of phenylmagnesium bromide forming the tetravalent tin species R_2 PhSnMgBr ($R = C_5H_5$, MeC_5H_4) rather than the formation of a complex [17]. With cyclohexylmagnesium bromide in ether, $(C_5H_5)_2$ Sn reacts rapidly at ambient temperatures to deposit colourless crystals which were shown to contain no tin (Mössbauer spectrum), and were identified by microanalysis and ¹H NMR as the Grignard reagent etherate, $(C_5H_5)MgBr \cdot O(C_2H_5)_2$, illustrating that a facile redistribution of organic groups between the magnesium and tin centres occurs in this case. The tin-containing residue of the reaction remained in solution and could not be identified, although its tetravalent nature was demonstrated from a Mössbauer spectrum of the solution.

The reactions of alkyl halides with $(C_5H_5)_2$ Sn have been examined by Noltes [18], and reactions with a 1:1 stoichiometry eventually yield tin(IV) species by carbenoid insertion of the stannylene into the carbon—halogen bond, but the presence of other tin(II) intermediates indicates that the mechanism is more complex than is initially obvious. The reaction is reported to proceed read-

41

ily for methyl iodide, allyl bromide and benzyl bromide. Contrary to expectation, cyclohexyl bromide and $(C_5H_5)_2$ Sn did not react even in boiling benzene. The addition of allyl bromide or chloride to the freshly prepared complexes $(C_5H_5)_2$ Sn:AlX₃ (where X = Br or Cl, respectively) under benzene resulted in the rapid dissolution of the insoluble complexes to form two layer systems, which within minutes crystallised to form white solids. The infrared spectrum of the oxygen- and moisture-sensitive solid from the reaction of allyl chloride and $(C_5H_5)_2$ Sn:AlCl₃ is identical to that of the complex C_5H_5 SnCl · AlCl₃ obtained from C_5H_5 SnCl and AlCl₃, and thus indicates the presence of *pentahapto*cyclopentadienyl rings and (approximately) tetrahedral AlCl₄ units. The infrared spectrum of the solid product from the reaction of $(C_5H_5)_2$ Sn:AlBr₃ and allyl bromide contains features characteristic of *pentahapto* rings and also a strong band at 397 cm⁻¹ assigned to a AlBr₄ moiety (cf. NMe₄AlBr₄ which exhibits bands at 405 and 118 $\rm cm^{-1}$ in the infrared) [13]. Microanalysis and additional features in the infrared spectrum indicate the presence of molecular benzene in the bromide complex, which has the composition $(C_5H_5)Sn \cdot AlBr_4$. $\frac{1}{2}C_6H_6$. Lattice molecular benzene also occurs in the arene complex (C_6H_6)- $Sn(AlCl_4)_2 \cdot C_6H_6$ in addition to coordinated benzene and bridging AlCl₄ units which render the structure polymeric [14]. The mass spectra of the two products (C_5H_5) SnClAlCl₃ and (C_5H_5) SnBrAlBr₃ $\cdot \frac{1}{2}C_6H_6$ are complex containing multiple tin-containing fragments, indicating that these compounds are also polymeric with structures similar to the arene complexes reported by Amma [14,15]. Mixing cyclohexyl or isopropyl bromide with $(C_5H_5)_2$ Sn:AlBr₃ in benzene failed to produce any reaction even after 5 days at ambient temperature; however, cyclohexyl bromide reacts readily in boiling benzene to yield the solvated complex (C_5H_5) SnBrAlBr₃ $\cdot \frac{1}{2}C_6H_6$. The complex (C_5H_5) SnClAlCl₃ is also rapidly formed on addition of a benzene solution of Me_3SiCl to $(C_5H_5)_2Sn$: $AlCl_3$, although the infrared spectrum showed slight contamination of the product by some trimethylsilyl species. Concentration in vacuo of the reaction medium after removal of the complex yielded a green oil which solidified slowly over several days and could not be identified. The most likely second product of the reaction, $Me_3SiC_sH_s$, is however, known to be unstable and readily decomposes via polymerisation processes.

Experimental

All manipulations were performed under dry nitrogen or argon. Dicyclopentadienyltin and bis(methylcyclopentadienyl)tin were prepared from tin(II) chloride and lithium cyclopentadienide in THF. Boron and aluminium trihalides were distilled or sublimed at least twice immediately prior to use. Iron(III) chloride was dried using thionyl chloride. All solvents were dried and freed from dissolved oxygen by standard methods also immediately before use.

Infrared spectra were recorded using Perkin—Elmer 457 and 521 instruments. NMR spectra were recorded using a Varian HA-100 spectrometer with TMS as an internal standard and lock signal. Mossbauer spectra were recorded at 77 K using a Harwell instrument equipped with a 256 multichannel analyser. ⁵⁷Fe and ¹¹⁹Sn spectra were obtained against ⁵⁷Co/Pd and Ba^{119m}SnO₃ sources, respectively. ⁵⁷Fe isomer shifts are quoted with respect to iron metal and ¹¹⁹Sn shifts with respect to SnO_2 . Data reduction to Lorentzian line shapes was effected by usual least-squares methods. Maximum estimated standard deviations are ± 0.05 (*I.S.*) and $\pm 0.10 \text{ mm s}^{-1}$ (*Q.S.*).

(a) Reaction of dicyclopentadienyltin with aluminium tribromide dimer

 Al_2Br_3 (0.707 g, 1.33 mmol) in benzene (10 ml) was treated dropwise with a benzene solution (6 ml) of $(C_5H_5)_2Sn$ (0.660 g, 2.65 mmol) with the immediate formation of a white solid, which was filtered off and dried in vacuo to give dicyclopentadienyltin—aluminium tribromide (1.11 g, 81%) as an air- and moisture-sensitive white solid. Found: C, 23.07; H, 1.91. $C_{10}H_{10}Br_3$ AlSn calcd.: C, 23.30; H, 1.96%.

(b) Reaction of dicyclopentadienyltin with aluminium trichloride dimer

 $(C_5H_5)_2$ Sn (0.689 g, 2.77 mmol) and Al₂Cl₆ (0.370 g, 1.39 mmol) were brought into reaction in benzene as in (a) to give dicyclopentadienyltin—aluminium trichloride as a white solid. Found: C, 31.74; H, 2.73. $C_{10}H_{10}Cl_3$ AlSn calcd.: C, 31.24; H, 2.64%.

(c) Reaction of bis(methylcyclopentadienyl)tin with aluminium trichloride dimer

 $(MeC_5H_4)_2$ Sn (3.74 g, 13.5 mmol) and Al_2Cl_6 (1.80 g, 6.75 mmol) were mixed in benzene (16 ml) whereupon the insoluble chloride dissolved and a twolayer system formed. The heavy layer was removed to another vessel, and excess solvent removed in vacuo to yield bis(methylcyclopentadienyl)tin—aluminium trichloride as a viscous golden brown oil. Found: C, 34.7; H, 3.5. $C_{12}H_{14}Cl_3$ AlSn calcd.: C, 35.1; H, 3.4%.

(d) Reaction of boron tribromide with dicyclopentadienyltin

 $(C_5H_5)_2$ Sn (1.26 g, 5.06 mmol) in benzene (10 ml) was added dropwise with stirring to a benzene solution of BBr₃ (1.42 g, 5.67 mmol) with the immediate formation of a white precipitate identified as tin(II) bromide from its Mössbauer spectrum (*I.S.* 4.03, *Q.S.* 0, Γ 1.21 mm s⁻¹).

(e) Reaction of boron tribromide with bis(methylcyclopentadienyl)tin

 $(MeC_5H_4)_2$ Sn (2.01 g, 7.26 mmol) and BBr₃ (1.82 g, 7.26 mmol) were brought into reaction as in (d) to yield tin(II) bromide (*I.S.* 4.03, *Q.S.* 0, Γ 1.45 mm s⁻¹).

(f) Reaction of boron trichloride with bis(methylcyclopentadienyl)tin

 $(MeC_5H_4)_2Sn (2.29 g, 8.27 mmol) and BCl_3 (0.97 g, 8.27 mmol) were$ brought into reaction as in (d) to yield tin(II) chloride (*I.S.*4.15,*Q.S.* $0, <math>\Gamma$ 1.45 mm s⁻¹) as the only identified product.

(g) Reaction of boron tribromide etherate with dicyclopentadienyltin

 $(C_5H_5)_2$ Sn (1.17 g, 4.70 mmol) in benzene (10 ml) was added dropwise with stirring to a solution of boron tribromide (1.22 g, 4.87 mmol) in ether (15 ml) with the formation of a creamy white solid, which was filtered off and dried in vacuo to give dicyclopentadienyltin—boron tribromide. Found: C, 23.76; H, 2.03. $C_{10}H_{10}Br_3BSn$ calcd.: C, 24.05; H, 2.02%.

(h) Reaction of boron trichloride etherate with dicyclopentadienyltin

 $(C_5H_5)_2$ Sn (1.49 g, 5.99 mmol) and BCl₃ (0.702 g, 5.99 mmol) were brought into reaction as in (g) to yield tin(II) chloride (I.S. 4.16, Q.S. 0, Γ 1.52 mm s⁻¹).

(i) Reaction of boron triiodide with dicyclopentadienyltin

BI₃ (2.94 g, 7.51 mmol) (prepared from the reaction of lithium iodide and boron tribromide at 120° C and the crude BI₃ recrystallised from benzene in the presence of mercury metal [19]) and $(C_5H_5)_2$ Sn (1.87 g, 7.51 mmol) were brought into reaction as described in (d) to yield a brown solid. Found: C, 17.79; H, 1.40. C₁₆H₁₀BI₃Sn calcd.: C, 18.76; H, 1.57%.

(j) Reaction of aluminium trichloride dimer with cyclopentadienyltin chloride

A slurry of C_5H_5 SnCl (1.07 g, 4.88 mmol) (prepared from mixing SnCl₂ and $(C_5H_5)_2$ Sn in THF as described by Noltes [18]) in benzene (12 ml) was added with stirring to Al_2Cl_6 (0.651 g, 2.44 mmol) under benzene (30 ml), whereupon both reactants dissolved to form a two-layer system. The layers were separated, and the heavier component dried in vacuo to yield a solid which was washed further with pentane to give cyclopentadienyltin tetrachloraluminate (0.61 g, 36%) as a pale brown solid. Found: C, 16.26; H, 1.64. C₅H₅Cl₄AlSn calcd.: C, 17.03; H, 1.43%.

(k) Reaction of tin(IV) bromide with bis(methylcyclopentadienyl)tin

 $(MeC_5H_4)_2$ Sn (1.48 g, 5.34 mmol) in benzene (4 ml) was added dropwise with stirring to a benzene solution (40 ml) of $SnBr_4$ (2.34 g, 5.34 mmol) with the immediate formation of a white solid, which contained a negligible amount of carbon and hydrogen, and was identified as tin(II) bromide by its Mössbauer spectrum (I.S. 4.05 mm s⁻¹, Q.S. 0). Evaporation of the filtrate in vacuo afforded a brown oil, which solidified within a few days to a waxy solid. Found: C, 27.29; H, 3.11%. Mössbauer parameters: two tin environments. I.S.(1) = 4.00 $Q.S.(1) = 0, \Gamma(1) 1.39 \text{ mm s}^{-1}$ and $I.S.(2) 1.51, Q.S.(2) 1.82, \Gamma_1(2) 1.06,$ $\Gamma_{2}(2)$ 1.06 mm s⁻¹.

(1) Reaction of iron(III) chloride dimer with dicyclopentadienyltin

(i) 1: 2 reaction in ether. Fe_2Cl_6 (1.72 g, 5.30 mmol) in ether (40 ml) was added rapidly to an ether solution (30 ml) of $(C_5H_5)_2$ Sn (2.64 g, 10.60 mmol) with the immediate formation of a blue-grey solid, which was filtered off, washed with ether and dried in vacuo. Found: C, 24.61; H, 3.73. Mössbauer parameters: 57 Fe: *I.S.* 1.07, *Q.S.* 1.77, Γ_1 0.96, 1.00 mm s⁻¹; 119 Sn: *I.S.*(1) 4.14, *Q.S.*(1) 0, Γ_1 1.48 mm s⁻¹, I.S.(2) ca. 1.6, Q.S. ca. 2.0 mm s⁻¹. The solid rapidly hydrolysed on exposure to the atmosphere. The products were not investigated further.

(ii) 1:2 reaction in THF. Fe₂Cl₆ (1.32 g, 4.07 mmol) in THF (15 ml) was added dropwise with stirring to a THF solution (20 ml) of $(C_5H_5)_2$ Sn (2.21 g, 8.88 mmol), whereupon the iron(III) chloride solution was immediately decolourised to give an orange-brown solution in an exothermic reaction. Addition of pentane and subsequent refrigeration produced creamy white crystals which were filtered off, but began to disintegrate on removal of the solvent. Mössbauer parameters: ¹¹⁹Sn: I.S. 4.14, Q.S. 0 mm s⁻¹. Other products were not identified.

(iii) 1: 3 reaction in ether. Fe_2Cl_6 (0.376 g, 0.72 mmol) in ether was added

dropwise to an ether solution of $(C_5H_5)_2$ Sn (0.88 g, 1.77 mmol) with the formation of a blue-grey solid which on shaking disappeared leaving a white solid under an orange solution. The white solid was filtered off and washed several times with ether and dried in vacuo. The Mössbauer spectrum of the white solid gave no ⁵⁷Fe signal, but indicated two tin environments: *I.S.*(1) ca. 3.97, *Q.S.*(1) 0, *I.S.*(2) ca. 1.6, *Q.S.*(2) ca. 2.0 mm s⁻¹. Evaporation of the filtrate gave an orange solid, which was recrystallised from pentane to give ferrocene. Found: C, 64.36; H, 5.13. C₁₀H₁₀Fe calcd.: C, 64.56; H, 5.42%. *I.S.* 0.53; *Q.S.* 2.42 mm s⁻¹ (lit. [20]: *I.S.* 0.53; *Q.S.* 2.37 mm s⁻¹).

(m) Reaction of cyclohexylmagnesium bromide with dicyclopentadienyltin

Freshly distilled $C_6H_{11}Br$ (1.35 g, 8.28 mmol) in ether (10 ml) was added dropwise and slowly to iodine-activated magnesium (0.222 g, 9.11 mmol) in dry ether (30 ml) and the reaction mixture was refluxed for two hours after the initial reaction had subsided. The reaction mixture was filtered and added dropwise to a solution of $(C_5H_5)_2Sn$ (1.65 g, 6.63 mmol) in ether (10 ml), whereupon the reaction mixture became orange-brown, and colourless crystals formed. These crystals, which gave no Mössbauer resonance, and readily powdered on removal from the reaction solution, were identified as cyclopentadienylmagnesium bromide etherate. Found: C, 44.77; H, 6.99%. $C_9H_{15}BrMgO$ calcd.: C, 44.40; H, 6.21%. ¹H NMR (degassed CDCl₃): δ_1 5.85, δ_2 (quartet) 3.53, δ_3 (triplet) 1.00, J ca. 7 Hz.

(n) Reaction of allyl bromide with $(C_5H_5)_2$ Sn: AlBr₃

Allyl bromide (0.805 g, 6.65 mmol) (freshly distilled under nitrogen) in benzene (4 ml) was added dropwise to freshly prepared $(C_5H_5)_2$ Sn:AlBr₃ (3.43 g, 6.65 mmol) under benzene (12 ml) with stirring, whereupon the complex dissolved to form a two-layer system which solidified within a few minutes forming a white solid. This was filtered off, washed with benzene, and dried in vacuo to give cyclopentadienyltin tetrabromoaluminate hemi(benzene) (2.92 g, 77%). Found: C, 16.92; H, 1.50%. C₈H₈Br₄AlSn calcd.: C, 16.87; H, 1.42%.

(o) Reaction of allyl chloride with $(C_5H_5)_2$ Sn:AlCl₃

Allyl chloride (0.19 g, 2.48 mmol) and $(C_5H_5)_2$ Sn:AlCl₃ (0.937 g, 2.45 mmol) were brought into reaction as in (n) to give cyclopentadienyltin tetrachloraluminate (0.59 g, 68%) as a white crystalline solid. Found: C, 17.87; H, 1.84%. C_5H_5 AlCl₄Sn calcd.: C, 17.03; H, 1.43%.

(p) Reaction of cyclohexyl bromide with $(C_5H_5)_2$ Sn:AlBr₃

Freshly distilled cyclohexyl bromide (0.784 g, 4.81 mmol) in benzene (6 ml) was added to $(C_5 H_5)_2 Sn:AlBr_3$ (2.48 g, 4.81 mmol) in benzene (15 ml) with no apparent initial reaction. The reaction mixture was refluxed for 1 h, whereupon a two-layer system formed, and on cooling a white solid crystallised out. The solid was filtered off and dried in vacuo to give cyclopentadienyltin tetrabromoaluminate hemi(benzene) (2.29 g, 84%). Found: C, 16.69; H, 1.63%. $C_8H_8 AlBr_4 Sn calcd.: C, 16.87; H, 1.42\%.$

(q) Reaction of allyl bromide with $(C_5H_5)_2$ Sn: AlBr₃ in a 1:3 ratio

Allyl bromide (0.07 g, 0.58 mmol) in benzene (6 ml) was added to $(C_5H_5)_2$ -Sn:AlBr₃ (0.89 g, 1.73 mmol) in benzene with no apparent sign of reaction. This mixture was stirred for 48 h, after which the solid was filtered off, washed with benzene and dried in vacuo to give the starting material $(C_5H_5)_2$ Sn:AlBr₃. Found: C, 23.21; H, 2.16. $C_{10}H_{10}$ AlBr₃Sn calcd.: C, 23.30; H, 1.96%. On concentration of the reaction filtrate, colourless platelets crystallised out, which were filtered off and dried to afford cyclopentadienyltin tetrabromoaluminate hemi(benzene). Found: C, 16.22; H, 1.53. C_8H_8 AlBr₄Sn calcd.: C, 16.87; H, 1.42%.

(r) Reaction of trimethylchlorosilane with $(C_5H_5)_2$ Sn:AlCl₃

Trimethylchlorosilane (0.690 g, 6.35 mmol) in benzene (4 ml) was added dropwise to $(C_5 H_5)_2 Sn: AlCl_3$ (2.43 g, 6.36 mmol) in benzene (23 ml) dissolving the complex to form a two-layer system, which was filtered. Addition of pentane to the two layers precipitated a white solid, which was filtered off, washed and dried in vacuo to give cyclopentadienyltin tetrachloraluminate (1.86 g, 83%). Found: C, 17.53; H, 1.99. $C_5 H_5 AlCl_4 Sn$ calcd.: C, 17.03; H, 1.43%.

References

- 1 A.B. Cornwell and P.G. Harrison, J. Chem. Soc. Dalton, in press.
- 2 A. Almenningen, A. Haaland and T. Motzfeidt, J. Organometal. Chem., 7 (1967) 97.
- J.G. Noltes, Abstr. 1st Intern. Conf. Org. Chem. of Germanium, Tin and Lead, Marseille, 1974;
 K.D. Bos, E.J. Bulten, J.G. Noltes and A.L. Spek, J. Organometal. Chem., 99 (1975) 71.
- 4 P.G. Harrison and J.J. Zuckerman, J. Amer. Chem. Soc., 92 (1970) 2577.
- 5 J. Doe, S. Borkett and P.H. Harrison, J. Crganometal. Chem., 52 (1973) 343.
- 6 A.B. Cornwell, P.G. Harrison and J.A. Richards, J. Organometal. Chem., 76 (1974) C26.
- 7 P.G. Harrison and J.J. Zuckerman, J. Amer. Chem. Soc., 91 (1969) 6885.
- 8 M.A. Healy and P.G. Harrison, J. Organometal. Chem., 51 (1973) 153.
- 9 L.R. Beattie and G.A. Ozin, J. Chem. Soc. (A), (1968) 2373.
- 10 P.D.H. Clippard, Ph.D. Thesis, Univ. of Michigan, 1969.
- 11 K.D. Bos, E.J. Bulten and J.G. Noltes, J. Organometal. Chem., 39 (1972) C52.
- 12 F.A. Cotton and T.J. Marks, J. Amer. Chem. Soc., 91 (1969) 7281.
- 13 R.H. Bradley, P.B. Brier and D.E.H. Jones, J. Chem. Soc. (A), (1971) 1397.
- 14 T. Auel and E.L. Amma, J. Amer. Chem. Soc., 90 (1968) 5941.
- 15 M.S. Weininger, P.F. Rodesiler, A.G. Gash and E.L. Amma, J. Amer. Chem. Soc., 94 (1972) 2135.
- 16 D.L. Tomaja, personal communication, 1973.
- 17 P.G. Harrison, J.J. Zuckerman and J.G. Noltes, J. Organometal. Chem., 31 (1971) C23.
- 18 K.D. Bos, E.J. Bulten and J.G. Noltes, J. Organometal. Chem., 67 (1974) C13.
- 19 T. Wentihk and V.H. Tiensuii, J. Chem. Phys., 28 (1958) 826.
- 20 N.N. Greenwood and T.C. Gibb, Mössbauer Spectroscopy, Chapman and Hall Ltd., London, 1971, p. 227.
- 21 J.D. Donaldson and B.J. Senior, J. Chem. Soc. A, (1969) 2358.